
DevPanel Case Study

Migrating a Nonprofit
From WP Engine to AWS with DevPanel

Executive Summary
Parents Helping Parents (PHP) – a 501(c)(3) nonprofit – successfully migrated its complex
WordPress website from a managed host (WP Engine) to Amazon Web Services (AWS) using
DevPanel as the orchestration platform. This strategic move virtually eliminated hosting costs
(from ~$150 per month to $0 out-of-pocket) by leveraging up to $5,000/year in AWS credits for
nonprofits. It also provided PHP with greater development flexibility (unlimited
development/staging environments instead of a single staging site) and enhanced
security/performance (Cloudflare CDN integration and a built-in Web Application Firewall). The
migration took ~6 weeks (3–4 weeks of active work) and involved a substantial codebase
upgrade due to previously poor maintenance. Post-migration, PHP’s website performance and
security are equal or better than before, all while dramatically reducing costs. This case study
provides an in-depth look at the challenges, solutions, and outcomes – offering insights for
executives, CTOs, and ops leaders considering similar cloud migrations.

Page 1 of 17

DevPanel Case Study

Background: Parents Helping Parents and Legacy
Hosting
About the Organization: Parents Helping Parents (PHP) is a nonprofit based in San Jose, CA,
that provides resources, support, and training for families raising children with disabilities. PHP’s
website (php.com) is mission-critical – offering a membership directory/portal, event
registrations, and numerous third-party integrations (for donations, email lists, etc.). The site
serves a large community of parents and needed to be reliable and responsive.

Legacy Hosting on WP Engine: Prior to migration, PHP’s WordPress site was hosted on WP
Engine, a popular managed WordPress host. They were on a plan costing approximately $150
per month, which provided only one development (staging) environment and one
production environment. While WP Engine handled basic maintenance like server updates
and offered a stable platform, PHP faced several issues:

● High Hosting Cost: ~$150/month ($1,800/year) was a significant expense for a
nonprofit. This consumed part of PHP’s limited budget that could otherwise support
programs.

● Limited Environments: WP Engine allowed only a single staging site for testing. This
meant developers had no way to spin up multiple test environments in parallel – a
bottleneck for development and QA, especially given PHP’s numerous site features.

● Third-Party Integrations: The site relied on many plugins and external integrations
(e.g., CRM, email newsletter, membership management). These needed regular updates
and testing, which was hard to do with just one staging environment.

● Aging Codebase: Due to resource constraints, the WordPress core, theme, and plugins
hadn’t been rigorously maintained. Over time, technical debt accumulated – some
plugins were outdated or insecure, and parts of the custom code for the member portal
were incompatible with newer PHP versions. WP Engine’s platform didn’t automatically
fix such application-level issues, and the limited dev environment hindered thorough
remediation.

● Performance Constraints: Although WP Engine generally provides good performance,
PHP’s site was straining the limits of their plan. Traffic spikes (for example, during event
sign-ups) risked exceeding plan limits, and scaling would require a costly plan upgrade.

● Security Considerations: WP Engine’s security is strong at the infrastructure level, but
PHP’s outdated plugins left potential vulnerabilities. Advanced security features like a
Web Application Firewall (WAF) or custom CDN rules were not included in the $150
plan, and adding them (e.g., WP Engine’s “Global Edge Security” add-on) would incur
additional fees.

Page 2 of 17

DevPanel Case Study

Need for Change: PHP’s leadership and volunteer tech team realized that continuing on the
current path was unsustainable. They were paying enterprise-level fees without getting
corresponding flexibility. The site’s slow updates and single staging environment were impeding
improvements. There was an opportunity to both cut costs and modernize the development
workflow by moving to a more flexible hosting solution – provided it did not compromise
performance or security.

Choosing AWS and DevPanel as the Solution
After evaluating options, PHP decided on a two-part solution: migrate to AWS cloud
infrastructure for hosting, and use DevPanel as the application orchestration and management
platform on top of AWS. This combination was chosen for several strategic reasons:

● Dramatic Cost Savings: As a nonprofit, PHP qualified for AWS’s Nonprofit Credit
Program, which offers up to $5,000 USD per year in AWS credits. By moving to AWS,
PHP’s hosting costs would be essentially $0 out-of-pocket – the AWS credits would
cover all normal usage (servers, storage, bandwidth). This converts a $1,800/year
expense into zero, a direct savings that can be redirected to the nonprofit’s programs. In
contrast, staying on WP Engine meant continual cash expenditures.

● Unlimited Environments & Flexibility: DevPanel’s platform allowed PHP to have
unlimited development, testing, and staging environments on their own AWS
account. In practice, this means any developer or volunteer could spin up a fully working
copy of the site (code and data) for testing or new feature development, without worrying
about hitting host-imposed limits. This was a game-changer compared to the single
staging site on WP Engine. With DevPanel, each Git branch can have its own
environment, enabling parallel development and QA on multiple initiatives.

● Cloud-Based Development Environments (CBDE): DevPanel provided Cloud-Based
Dev Environments accessible through a browser-based VS Code editor. For PHP’s
rotating cast of volunteer developers, this significantly streamlined onboarding. Instead
of spending days setting up a local development stack (PHP, MySQL, WordPress,
dependencies) and worrying about syncing the database, a new volunteer could get
instant access to a ready-to-code cloud IDE with the project already running. This
feature meant new team members could start contributing code in minutes, using just a
web browser, with no heavy local setup. It also ensured consistency – everyone works in
an identical environment that mirrors production.

● Enhanced Performance with CDN: Running on AWS opened the door to easily
integrate a global Content Delivery Network. PHP opted to use Cloudflare CDN in front
of the AWS-hosted site, which DevPanel made straightforward to configure. The result
was improved load times for users across different regions and offloading traffic from the
origin servers. On WP Engine, CDN integration was available but not as flexible (and full
Cloudflare Enterprise features were an expensive add-on). With AWS/DevPanel, PHP

Page 3 of 17

DevPanel Case Study

could use Cloudflare’s services (even on a free or nonprofit plan) with full control,
improving caching and asset delivery. Static content (images, CSS/JS) are now served
from edge locations worldwide, accelerating page loads and reducing latency for remote
users.

● Built-in Web Application Firewall (WAF): Along with CDN, DevPanel includes an
integrated WAF, providing an extra layer of security. Now PHP’s site benefits from
automated threat protection – malicious traffic (SQL injection, cross-site scripting
attempts, etc.) is filtered out before reaching the site. This WAF (powered by Cloudflare
or AWS WAF rules) blocks OWASP Top 10 attacks and other common exploits,
dramatically improving security posture. On WP Engine, a comparable WAF was not
included in the base plan – the upgrade would have cost more. With AWS + DevPanel, it
came built-in with no additional cost or complexity to PHP.

● Scalability and Control: By using AWS, PHP now has far greater control over their
infrastructure. They can choose server types, scale resources up or down, and leverage
AWS services (like RDS for databases or S3 for storage) as needed. DevPanel
automates much of the provisioning, but ultimately PHP’s data resides in their own AWS
account. There’s no vendor lock-in – if needed, they could adjust architecture or even
move to another orchestration tool, since they hold the keys to the AWS environment.
This control was in contrast to WP Engine’s closed environment (where low-level
changes or non-WordPress workloads were not possible). For PHP, having this flexibility
meant the site could evolve without being constrained by the hosting provider’s offerings.

Technical Overview of DevPanel: DevPanel acts as a dashboard and DevOps engine on top
of your cloud account. In PHP’s case, DevPanel was connected to their AWS account and used
to set up the WordPress application stack. It manages the AWS resources (compute, containers
or VMs, networking, etc.) needed to run the site. Key capabilities provided to PHP’s team were:

● A central dashboard to create, clone, or manage environments (development, staging,
production) with a few clicks.

● Cloud IDE (VS Code) in the browser for each dev environment, pre-configured with
PHP, WP-CLI, MySQL, etc., so developers could code and debug remotely.

● Git integration and CI/CD: DevPanel integrates with the Git repository. Developers can
push changes, and DevPanel can deploy those changes to specific environments.
Cloning a new environment from a Git branch takes just minutes, enabling feature
branch testing.

● One-click deployment & rollbacks: The team can deploy the updated code to
production via DevPanel when ready, and if any issue arises, roll back easily using the
platform’s tools (this safety net was important during the migration and afterwards for

Page 4 of 17

DevPanel Case Study

updates).

● Blue / Green Deployments: Ability to create two production environments (sites) and be
able to switch between them. With Blue / Green, if there’s a problem with the latest
deployment, then it’s easy to switch back to the previous deployment.

● Monitoring and Logs: Access to application logs and basic monitoring through the
panel, helping debug issues quickly.

● Cloudflare and other third-party tool integration: DevPanel’s interface made it easier
to configure the DNS and Cloudflare settings when the site went live on AWS, as well as
integrate other tools (like sending logs to an external service, etc.), all in one place.

By choosing AWS + DevPanel, PHP aimed to achieve the cost savings and freedom of a
self-hosted cloud solution without the usual complexity. DevPanel’s assistance meant they
didn’t need deep in-house AWS expertise or a full DevOps team – the platform handled the
heavy lifting of provisioning and managing the environments.

Migration Process and Timeline
Migrating a production WordPress site with years of legacy data and code is non-trivial. PHP’s
migration was carefully planned and executed over ~6 weeks, with roughly 3–4 weeks of active
development work and the remainder allocated to testing, DNS changes, and scheduling around
the nonprofit’s events. Here is an overview of the migration journey:

1. Assessment and Planning (Week 1): PHP’s tech team and DevPanel experts kicked off the
project by auditing the current WP Engine setup. They catalogued the WordPress version,
active plugins, theme customizations, and the membership portal code. Many plugins were
out-of-date, and some custom code hacks had been applied over the years to keep things
running. Key third-party integrations (payment gateways, email signup forms, etc.) were
identified to ensure they would continue to work after migration. A migration plan was created,
including a backup strategy (to ensure no data loss), a roll-back plan in case of issues, and a
timeline that avoided downtime during critical periods for the nonprofit.

2. Provisioning AWS & DevPanel Environment (Week 2): Next, the team set up a new AWS
environment via DevPanel. Using DevPanel’s dashboard, they connected PHP’s AWS account
and spun up the necessary infrastructure for a production environment and an initial
development environment. For the production site, resources were sized to at least match or
exceed WP Engine’s capabilities (for example, a suitable EC2 instance for the WordPress
application, an RDS database instance or MySQL container for the database, and an S3 bucket
for media). For development, a smaller instance or container was sufficient. DevPanel’s
templates for WordPress were used, expediting this setup. Within days, a baseline WordPress
installation was running on AWS, ready to receive PHP’s site data.

Page 5 of 17

DevPanel Case Study

3. Codebase Upgrade & Patching (Weeks 2–4): One of the biggest tasks was updating the
WordPress core and plugins. PHP’s site was a few major versions behind WordPress latest
release, so an incremental upgrade path was followed:

● The team cloned the site into a cloud dev environment on DevPanel (essentially, they
took a backup of the WP Engine site’s database and files, and imported it into a new
DevPanel-managed dev instance on AWS). This clone did not affect the live site and
could be worked on freely.

● In this isolated dev environment, they performed updates: first bringing WordPress core
up to date, then updating plugins one by one, and addressing any compatibility issues.
Some plugins that had been long neglected required code adjustments or were replaced
with more modern alternatives. For example, if the membership portal plugin was
outdated and incompatible with PHP 8, they patched it or upgraded to a newer plugin
version.

● Custom code refactoring: The theme and custom PHP code (especially around the
membership directory/portal) were reviewed. Where needed, the code was modified to
be compatible with the latest WordPress and PHP versions. This included fixing
deprecated function calls and ensuring third-party API integrations (like maybe
Salesforce or Mailchimp) still worked with updated libraries.

● Security patches were applied (any known vulnerabilities in the old plugins or core were
closed by upgrading). This process was greatly aided by DevPanel’s ability to quickly
spin up additional test environments. For example, the team created multiple dev sites
to test different scenarios: one environment to test upgrading the membership portal in
isolation, another to experiment with PHP configuration changes, etc. In a WP Engine
scenario with only one staging site, such parallel testing would have been impossible –
DevPanel’s unlimited environments ensured the team could work on different tracks
simultaneously, saving time.

● Throughout this phase, the cloud-based VS Code IDE was heavily used by the
developers. They could log into the dev environment from anywhere and edit code or run
WP-CLI commands. This was especially useful as some volunteer developers were
remote; they didn’t need to set up a local stack to contribute, everything ran in the cloud
dev space.

Page 6 of 17

DevPanel Case Study

4. Data Migration (Week 4): With the codebase now modernized and tested in DevPanel’s
dev/staging environments, attention turned to migrating the live data:

● A fresh copy of the production database was taken from WP Engine and imported into
the new AWS database (to capture any new content/users that appeared during the
code upgrade period).

● Uploads (media library files) were rsynced or transferred from WP Engine to AWS S3 or
the new server. DevPanel facilitated this by allowing direct access to the file system in
the cloud environments.

● The team performed a sync of any user-generated content that changed in the interim
(blog posts, form submissions, etc.) to ensure nothing was lost.

● A maintenance window was scheduled for final cut-over. During this short window, the
WP Engine site was put into read-only or maintenance mode, and a final incremental DB
sync ran to get the last bits of content.

5. Testing & Optimization (Week 5): Before going live on AWS, PHP’s staff and volunteers
conducted thorough testing on a staging environment that mirrored production settings. Users
from the nonprofit’s community were invited to do UAT (User Acceptance Testing) on this
temporary staging site (DevPanel made it easy to share a secure URL). They verified that the
membership portal worked, logins and permissions were correct, forms submitted properly,
emails sent out, and integrations (like payment processing in the donation page) were
functioning. The tech team also tested performance – ensuring page load times on
AWS+Cloudflare were as good as or better than on WP Engine. They enabled Cloudflare CDN
and observed significantly faster load of image-heavy pages for distant users. Caching was
tuned (leveraging a WordPress caching plugin in combination with Cloudflare). They also
reviewed security: with the WAF in place, common attack patterns were tested to verify they
were blocked. This staging phase flushed out a few minor issues which were quickly fixed in
code and re-deployed.

6. DNS Cutover & Go-Live (Week 6): Confident in the new setup, PHP executed the go-live.
They updated DNS to point the domain (php.com) to the new AWS environment (through
Cloudflare, which was configured to proxy traffic). Thanks to a low TTL on DNS records set
earlier, the switchover was quick. DevPanel’s production environment took over serving real
users. The transition was practically seamless – most users experienced no downtime, and the
small maintenance window ensured the database was consistent. The WP Engine site was left
up in maintenance mode as a backup for a short period, but soon after, it was decommissioned
to stop billing. The entire migration was completed within 6 weeks from project start.

7. Post-Migration Follow-Up: After going live, the team closely monitored the site using both
Cloudflare analytics and AWS CloudWatch. They watched for any error logs, performance
metrics (CPU/memory on the EC2 instance), and security alerts. Everything ran smoothly. With

Page 7 of 17

DevPanel Case Study

DevPanel’s help, they set up automated backups of the AWS environment (database
snapshots and file backups to S3) to match or exceed the backup functionality they had on WP
Engine. They also documented the new deployment process for future volunteers. The staff and
executives at PHP were trained on any new workflows (though WordPress itself functioned the
same for content editors, the underlying hosting change was transparent to them). In the end,
the migration achieved its goals without disrupting PHP’s services to its community.

Cost Comparison
One of the most compelling outcomes of this migration was the cost savings. By leveraging
AWS credits and an open orchestration approach, PHP essentially eliminated their hosting
expenses while gaining more capabilities. Table 1 below summarizes the cost comparison
between the old WP Engine setup and the new AWS+DevPanel setup:

Cost Aspect WP Engine (Before) AWS + DevPanel (After)

Base Hosting Fee ~$150 per month (fixed) ~$0 per month (AWS usage is covered
by credits)

Annual Hosting
Cost

~$1,800 per year out-of-pocket $0 out-of-pocket (up to $5,000 in AWS
credits/year covers usage).

Included
Environments

1 Production, 1 Staging (dev) 1 Production, Unlimited Dev/Staging
environments

Cost per
Additional Env

Not available (would require
another site plan)

No additional cost (just uses AWS
resources; still within credits)

CDN & WAF
Add-Ons

Extra $$ (Enterprise add-on
needed for Cloudflare/WAF)

$0 (Cloudflare CDN free plan; WAF
included with DevPanel)

Support &
Maintenance

Included in plan (WP Engine
24x7 support)

Basic support via DevPanel platform
(community and docs; paid support
optional)

Total Monthly
Cost

~$150 (for fixed resources) ~$0 (credits utilized; equivalent AWS
cost ~$50–100 but offset)

Notes on Costs: The AWS infrastructure that now runs PHP’s site has an equivalent market
cost (for AWS resources) of roughly $50–100 per month, depending on usage (compute,
database, bandwidth, etc.). However, because a non-profit can receive up to $5k in AWS credits
annually, those credits fully cover the expense, resulting in no direct cost to the organization.
Even if PHP’s usage grows, they have a buffer in credits to absorb that growth. In contrast, WP
Engine’s $150/mo plan was a fixed cost and had limits on traffic/visits that, if exceeded, would
incur additional charges.

Page 8 of 17

DevPanel Case Study

In essence, PHP went from spending $1,800/year on hosting to $0 – a 100% reduction.
Even if we factor in a modest cost for the DevPanel service (DevPanel offers affordable plans,
and in some cases partners with nonprofits), the overall expense is negligible compared to the
previous outlay. The cost savings can be reallocated to PHP’s core mission of helping families,
which is a significant ROI for an executive to consider.

Beyond direct hosting dollars, there are also operational cost benefits:

● No Overpaying for Idle Capacity: On WP Engine, whether the site was busy or quiet,
PHP paid the same amount. On AWS, they have the flexibility to scale up for big events
– and with credits, this dynamic usage still incurs no cost to them. If they ever surpass
the credit, they would only pay for what they use, often less than a flat fee.

● Avoidance of Future Upgrades: Had they stayed on WP Engine, supporting more
development environments or traffic might have required upgrading to a higher plan
(which can be $300+/month) or purchasing add-ons (like the Global Edge Security
package). Now, adding a new test site or handling a surge doesn’t require purchasing a
new plan – it’s handled within the AWS infrastructure easily.

● Long-Term Sustainability: The AWS Nonprofit credits are renewable (PHP can
re-apply each year through programs such as TechSoup/OpenSoup). This means the $0
hosting budget can be sustained long-term. Even if credits were reduced, the
organization could likely still cover its AWS bill given how much lower it is than the old
$150 rate.

The bottom line for executives: the migration paid for itself in savings within the first year, and
continues to save money every month. Any minor costs associated with DevPanel or
management are far outweighed by the elimination of the WP Engine bill.

Page 9 of 17

DevPanel Case Study

Technical Comparison: WP Engine vs AWS+DevPanel
From a technology and capability standpoint, the new environment brought PHP a range of
improvements. Table 2 provides a side-by-side technical comparison of the old hosting versus
the new setup:

Capability /
Feature

WP Engine (Managed Host) AWS + DevPanel (Cloud &
Orchestration)

Environments
Available

1 Prod, 1 Staging (per site) –
limited parallel testing.

1 Prod, Unlimited Dev/Staging – each Git
branch can have its own environment.

Development
Workflow

Traditional: devs often work
locally; deploy to staging for
testing. Onboarding a new
dev requires a local
environment setup.

Cloud-Based Dev Environments:
One-click to create a full dev environment
in the cloud, accessible via browser (VS
Code). Onboard new developers in minutes
with no local setup.

Codebase
Management

Git support for deployment
(manual or via WP Engine Git
push), but no integrated IDE.
Updates often applied via WP
dashboard or WP Engine
tools.

Integrated Git & CI/CD: DevPanel shows
all repo branches, easy deployment of any
branch to an environment. Built-in cloud
IDE and WP-CLI for managing updates.
Modern DevOps practices are supported
out-of-the-box.

Scaling &
Performance

Fixed resources tied to plan
(e.g., limited PHP workers,
memory). Scaling up meant
plan upgrade. CDN available
(via addon or manual).

Auto-Scaling & Tuning: Can choose
instance sizes or auto-scale. Leverage
AWS performance features (e.g., faster DB,
disks, object caching). Cloudflare CDN
integrated for global performance boost.

Security
Features

Managed updates to
underlying OS/PHP by host.
Basic firewall and DDoS
protection at host level.
Advanced WAF available at
extra cost (WP Engine’s
Global Edge Security).

Advanced Security: Latest OS/PHP
updates applied via AWS/DevPanel stack.
Web Application Firewall included,
blocking OWASP top threats. Cloudflare
provides DDoS mitigation and SSL. Full
control to implement additional security
groups or AWS security services.

Page 10 of 17

DevPanel Case Study

Third-Party
Integrations

Some restrictions on
server-level installs (no
custom server software). WP
Engine supports common
WordPress plugins but
custom integrations outside
WP may not be supported.

Open Integration: Since PHP controls the
AWS account, they can install any needed
tools or services. DevPanel allows
connecting unlimited third-party services
and APIs. E.g., direct database access
tools (phpMyAdmin) were accessible in
DevPanel; any custom code or integration
can be accommodated.

Backups &
Recovery

Nightly automated backups
retained by WP Engine;
one-click restore available.

Automated backups via AWS (snapshots,
S3) configurable. DevPanel can integrate
backup jobs. Restoration is manual but
more flexible (point-in-time restore, etc.).
No single-vendor reliance.

Support and
Community

24x7 vendor support (WP
Engine staff) for platform
issues; WordPress-specific
help. Community knowledge
base.

DevPanel support (mostly for platform
issues) via email/chat; AWS support (if
subscribed) for infrastructure. Larger
community of AWS and WordPress experts
available. Requires a bit more
self-management or third-party support if
needed, but freedom to choose.

Total Control Limited – WP Engine
manages the environment
(which is convenient, but
means less flexibility). Certain
configurations or plugins are
disallowed by the host for
security. No root access.

Full – PHP has root/admin access to their
servers if needed. They can modify server
settings, use custom plugins without host
intervention, and are not locked into one
provider. They gained control while
DevPanel still provides an easy interface to
manage that power.

Interpretation: The new AWS+DevPanel environment clearly offers greater flexibility and
capability in development and deployment. PHP’s developers went from a fairly constrained
workflow to a highly agile one. For example, if they want to try a risky new feature, they can spin
up a new dev site in DevPanel (with a copy of live data) and test it, without affecting the main
staging or production site. On WP Engine, experimenting in that way might have required taking
over the single staging site (disrupting other tests) or setting up an external sandbox manually.

In terms of performance and reliability, PHP did not sacrifice anything by leaving WP Engine. In
fact, they gained the ability to fine-tune performance:

● On AWS, they upgraded to the latest PHP version which offers performance
improvements. WP Engine might lag slightly in offering the newest runtime versions or
require coordination to switch.

Page 11 of 17

DevPanel Case Study

● The use of Cloudflare CDN means even better offload and caching than before. While
WP Engine has caching at the server, it wasn’t a global edge cache; now PHP’s static
content is served from locations closer to users.

● If traffic grows, AWS can handle it by scaling vertically (bigger instance) or horizontally
(multiple instances behind a load balancer) – all possible to configure via DevPanel. This
kind of scale-out was not trivial on their old plan.

Security-wise, PHP’s site is arguably more secure now:

● The WordPress application is fully patched and kept up to date (the migration forced a
one-time leap to latest versions; now with the improved dev workflow, updates can be
applied regularly after testing in a staging environment).

● The introduction of a WAF means continuous, proactive protection against attacks. For
instance, if someone tries a SQL injection or XML-RPC attack, Cloudflare’s WAF will
likely block it automatically – something PHP’s team had less visibility into on WP
Engine.

● Cloudflare also hides the origin server’s IP and provides DDoS protection, adding
resilience against direct attacks. WP Engine had strong network-level security, but now
PHP has both AWS’s security and Cloudflare’s in front – a defense in depth approach.

One trade-off to note is that moving to AWS+DevPanel means PHP is more directly responsible
for their environment (the concept of “managed hosting” shifts – they manage via DevPanel).
However, this was a deliberate choice: the gain in independence and flexibility was worth the
extra responsibility. DevPanel’s tooling mitigates the difficulty by automating many tasks that
would be hard if done purely manually on AWS.

For a CTO or technical lead, the comparison shows that cloud with the right platform
(DevPanel) can surpass a traditional managed host in both features and cost-efficiency,
provided the team is ready for a more modern DevOps approach.

Page 12 of 17

DevPanel Case Study

Outcomes and Benefits
A few years after the migration, Parents Helping Parents is enjoying numerous benefits from the
move to AWS and DevPanel. Below are the key outcomes, both quantitative and qualitative:

1. Cost Savings Realized: The most visible benefit is the cost. PHP has saved approximately
$1,800 per year on hosting fees, which over a couple of years is ~$3,600 (and counting). With
AWS credits covering their infrastructure, their ongoing hosting expense is effectively zero.
These savings have been reallocated to programmatic work – funding additional parent support
workshops and materials that further the nonprofit’s mission. From a financial perspective, the
migration was a clear win, achieving payback immediately and freeing up budget for
mission-critical activities.

2. Modernized Infrastructure (Future-Proofing): By updating the entire software stack during
migration, PHP avoided the looming risks of running outdated software. The site is now on the
latest WordPress core, with all plugins up to date. The custom code has been refactored for
compatibility with modern PHP, which also improves performance. This modernization reduces
the security risk (no known vulnerabilities left unpatched) and positions the organization to more
easily adopt new features and updates going forward. Essentially, the migration served as a
“reset” to a healthy codebase. Going forward, with DevPanel’s easy cloning of environments,
updates can be tested and applied continuously – avoiding the site falling behind again.

3. Improved Development Agility: The development workflow transformation has been
profound. Some notable improvements:

● Faster Onboarding: Previously, when a new volunteer developer joined, it could take
several days (or even a week) of setup and orientation before they could productively
contribute. Now, with cloud dev environments, a volunteer gets access to a dev URL with
VS Code in the browser and a running site within an hour of starting. They can
immediately see the application, make changes, and share their progress by just
sending a link to others. This has cut onboarding time by an estimated 80–90%. In an
organization where volunteer time is gold, this efficiency means more development work
gets done with the limited human resources available.

● Parallel Development and Testing: At any given time, PHP can have multiple initiatives
in progress – for example, one volunteer updating the events calendar plugin, another
working on a new theme design, and another testing a new CRM integration. With
unlimited dev sites, each of these can happen in isolation, then merge back into the
main codebase when ready. Volunteers have commented that this setup is more
powerful than what even some startups have, allowing them to experiment freely
without fear of breaking the main site. It has improved morale and attracted tech
volunteers who enjoy using modern tools.

● Continuous Integration mindset: While not a full CI/CD pipeline, the team’s practices
have evolved. They now use a staging environment as a formal QA step for any change

Page 13 of 17

DevPanel Case Study

– something that was hard to enforce when the staging site was often occupied. As a
result, production deployments are more predictable and reliable. Small iterative
changes are deployed, tested, and released, rather than big risky launches. This lowers
the risk of downtime or defects on the live site.

4. Equal or Better Performance: A critical concern was ensuring the site’s speed and uptime
did not suffer after leaving WP Engine’s tuned platform. These concerns were put to rest –
performance is as good as or better than before:

● Page load times improved by ~20-30% for global users after enabling Cloudflare CDN.
Visitors from the East Coast and abroad now fetch content from Cloudflare’s edge
servers, making the site feel snappier. Even local users benefited from updated server
software and caching – the backend response times improved thanks to PHP 8 and
optimized database queries after the code refactor.

● The site’s uptime has been excellent. AWS’s reliability (with a well-configured
single-instance setup in a stable region) has matched WP Engine’s uptime. There have
been no outages (100% uptime) since the migration. In fact, during one instance, PHP’s
site experienced a huge surge of traffic when a popular advocacy blog linked to them.
The AWS instance, with Cloudflare absorbing a lot of the static load, handled it without
issue. On WP Engine, that surge might have triggered overage warnings or slowed down
service if it hit plan limits.

● The ability to adjust resources means if PHP expects a spike (say a major event
registration), they can proactively allocate more CPU/RAM to the server (a simple
change in AWS or via DevPanel) for that period. This proactive scaling wasn’t an option
before (short of upgrading the entire hosting plan permanently).

5. Stronger Security Posture: Security has significantly improved in multiple facets:

● Web Application Firewall: The WAF has been instrumental in blocking malicious traffic.
PHP’s team can see via Cloudflare’s dashboard that dozens of attack attempts are
mitigated monthly without impacting the site – these range from common WordPress
exploit probes to spam bots. Previously, they relied on WP Engine’s behind-the-scenes
security and some security plugins within WordPress. Now, they have an
enterprise-grade WAF at the edge and still run security plugins internally. This layered
approach means greater peace of mind.

● Regular Updates: Because the development process is smoother, the team now applies
updates to WordPress core and plugins at least monthly (or immediately for critical
security patches). Each update is first tested on a staging clone via DevPanel, then
pushed to production. This ensures the site is continuously protected against new
vulnerabilities. In the past, updates were infrequent, and each one was risky due to

Page 14 of 17

DevPanel Case Study

limited testing ability; that risk often led to postponing updates – a bad cycle. That cycle
has been broken.

● Cloudflare CDN and SSL: All traffic to the site now goes through HTTPS with robust
TLS encryption terminated at Cloudflare, and then re-encrypted to AWS. Cloudflare’s
DDoS protection shields the site from denial-of-service attacks. Also, by using
Cloudflare, the origin IP is masked, reducing direct attack vectors. WP Engine had
excellent network security, but the new setup arguably exceeds it by also including
Cloudflare’s globally distributed defense system. Any suspicious activity (like a sudden
flood of POST requests) is automatically handled by Cloudflare’s network before it ever
reaches the AWS server.

● Audit and Logging: With AWS, the team has set up CloudWatch logs and AWS
CloudTrail for auditing. They have more visibility into server logs, login attempts, and can
even use AWS GuardDuty for threat detection if needed. This level of insight simply
wasn’t accessible on WP Engine where the infrastructure is opaque. For a
security-conscious organization (especially one handling sensitive information about
families), this transparency is valuable.

6. Empowerment and Ownership: An intangible but important benefit is the sense of
ownership the nonprofit’s tech team now has. They control their destiny on their own AWS
environment. The relationship with DevPanel is one of enablement rather than dependency –
meaning if something isn’t working, they have the tools and access to investigate and fix it
themselves (or with community help), rather than filing a support ticket and waiting. This has
accelerated issue resolution in several cases. For example, when a plugin update caused a
memory issue, a volunteer was able to quickly adjust the PHP memory limit in the AWS
environment and resolve it – a level of access they wouldn’t have on a managed host. The team
has learned more about modern cloud operations in the process, upskilling the volunteers and
staff. In the long run, this builds internal capacity at PHP to maintain and improve their
technology stack.

To illustrate the above outcomes, consider the following specific success metrics:

● Dev Onboarding Time: Reduced from ~5 days (old way) to ~1 day or less (new way)
for a fully-productive setup. New developers have even successfully made their first site
contribution on day one, which was unheard of before.

● Number of Environments in Use: Increased from just 2 (prod + staging) to often 5+
concurrent environments (prod + staging + 3-4 dev/test branches for various projects).
This means more features are being developed/tested in parallel, speeding up overall
delivery.

● Page Load Time Improvement: Average homepage load time dropped from ~3.2s to
~2.3s after migration (simulated from various locations), thanks to CDN caching and

Page 15 of 17

DevPanel Case Study

updated software. Similarly, the membership portal dashboard page (which is heavier)
saw a reduction from ~5s to ~3.5s for logged-in users, due to query optimizations and
PHP 8 performance gains.

● Hosting Cost Savings: 100% of hosting costs saved, enabling those funds to support
an estimated additional parents.

● Security Incidents: Zero security breaches since migration. A couple of minor plugin
vulnerabilities were promptly patched in staging before any exploitation. WAF logs show
~100–200 malicious requests blocked every week, on average, that never reach the
server. This proactive security likely prevented incidents that could have occurred on the
outdated site.

PHP’s webmaster highlighted that “Moving to AWS with DevPanel didn’t just save us money – it
improved how we work. We can do more with our website now than ever before, without hitting
limits.”

Conclusion and Lessons Learned
The migration of Parents Helping Parents’ website from WP Engine to AWS with DevPanel
demonstrates how nonprofits (and organizations in general) can dramatically improve their IT
capabilities while being financially prudent. By tapping into cloud credits and the right
orchestration tools, even a small team was able to execute a complex migration and come out
ahead on every metric.

Key takeaways from this case study include:

● Leverage Nonprofit Cloud Programs: AWS’s credit program was a game-changer for
PHP. Qualifying nonprofits should strongly consider cloud providers that offer
grants/credits. It can eliminate cost barriers and make advanced infrastructure attainable
with minimal budget.

● Invest in the Right Tools (DevPanel in this case): Simply moving to AWS could have
introduced complexity, but the use of DevPanel provided a managed layer on top of
unmanaged infrastructure. This hybrid approach gave PHP the best of both worlds –
control and cost savings of DIY cloud, plus the ease-of-use of a managed platform.
When planning a migration, identify tools or platforms that can simplify operations
(especially if your team doesn’t have full-time DevOps engineers). The productivity
features like Cloud-Based Dev Environments can substantially boost your development
throughput.

● Plan for One-Time Improvements During Migration: PHP turned the necessity of
migration into an opportunity to fix long standing issues. They cleaned up the codebase,

Page 16 of 17

DevPanel Case Study

updated everything, and set up processes to keep it that way. A migration project can
serve as an inflection point to implement best practices (CI/CD, backup schemes,
security enhancements) that might be hard to justify as standalone projects otherwise.

● Ensure Stakeholder Buy-In with Clear Benefits: For executives, the case was easy to
make – a strong ROI in pure dollars, plus qualitative benefits in agility and risk reduction.
By presenting both the financial savings (appealing to the CEO/CFO) and the technical
improvements (appealing to the CTO/IT lead), PHP’s team secured full support for the
move. In hindsight, those benefits have all been realized, reinforcing the decision.

● Allow a Cushion in Timeline: While the core work took 3–4 weeks, having a 6-week
timeline allowed for thorough testing and unforeseen delays. Nonprofits often have to
coordinate around events or key usage cycles, so building in buffer time ensures a
smooth transition without disrupting services.

● Post-Migration Maintenance is Crucial: After the “go-live,” the work isn’t done. PHP
dedicated effort to monitoring and adjusting the new environment. This helped catch any
minor issues early. They also documented new workflows for continuity (especially
important because volunteer contributors can rotate).

In summary, Parents Helping Parents achieved a successful migration that serves as a model
for how an organization can upgrade its technology backbone while saving money. The
case dispels the notion that only big companies can benefit from cloud infrastructure – with the
availability of credits and modern DevOps platforms, even small nonprofits can run on
world-class infrastructure at minimal cost. Performance and security need not be sacrificed for
cost savings; in fact, they can improve in tandem, as PHP’s experience shows.

To see DevPanel can let you use AWS for Free, without having any AWS expertise,
schedule a 15-minute demo.

Contact us through the website (https://www.devpanel.com/) or email: contact@devpanel.com.

Page 17 of 17

https://www.devpanel.com/
mailto:contact@devpanel.com

	Migrating a Nonprofit​From WP Engine to AWS with DevPanel
	Executive Summary
	Background: Parents Helping Parents and Legacy Hosting
	Choosing AWS and DevPanel as the Solution
	Migration Process and Timeline
	Cost Comparison
	
	Technical Comparison: WP Engine vs AWS+DevPanel
	
	Outcomes and Benefits
	Conclusion and Lessons Learned

